Superconducting RF Activities and Plans J. Mammosser

Strand Laboratory

Managed by UT-Battelle for the Department of Energy

Outline:

- Near Term Plans (1-2 yrs)
 - MB Linac
 - HB Linac
 - Plans for CM12
 - Recent Successes (CM19)
 - Production of Spare Cryomodules
 - SRF Facilities Status and Plans
- Long Term Plans
 - Refurbish Cryomodules to build overhead
 - Procurement of Additional HB Cryomodules
- Summary

Near Term Plans (FY08-FY11)

 Urgent need is to increase linac gradients to meet the power ramp-up plan, next 1 ½ yrs

MB Linac:

- Need to repair/recover the two disabled cavities (CM10b,CM11b), during June 08 maintenance down
- Armed with experience gained from repair of CM19, tested Dec. 08, shows repair can be done without degrading performance on assembled cryomodule
 - Procedures we developed worked!
 - Full recovery of both cavities would gain additional ~ 15 MeV!
- Build 1 Spare MB Cryomodule

Near Term Plans (FY08-FY11)

HB Linac:

- Remove CM12, Feb Maintenance Down, loss of ~ 25 MeV
 - CM12 Is the lowest operating HB cryomodule due to end group quenching (Field Emission)
 - CM12 Is typical of HB CM performances, field emission limited and therefore represents the best opportunity to develop surface processing techniques
- Install CM19, Feb maintenance down, additional gain of ~ 40 MeV!
- Fabricate 2 HB spare cryomodules in-house

Near Term Plans (FY08-FY11)

• Repair Plans for CM12

- Fix beamline leak (venting and cleanroom repair)
- Perform a baseline test (map the radiation)
- Develop surface processing techniques
- Improve the gradients by reducing field emission onset
- Install in accelerator
- Apply procedure to additional HB cryomodules as necessary to meet power ramp-up goals

Aim is to develop a technique to increase the existing HB cryomodule gradients by 2-3 MV/m per cavity!!

Repair Plans for CM12:

Identified Options:

- Helium or gas processing
 - If successful this would represent shortest time to reaching SNS's operational goal, processing could then take place in tunnel on down periods with no disassembly of cryomodules

Internal surface cleaning without disassembly

- HPR
- CO2, very promising and working at DESY

Reprocessing of cavities

- Requires full disassembly of cryomodules
- Degrease, HPR followed by clean assembly
- Would interfere with building spares

Recent Successes (CM19):

- CM19 cavity b suffered from erratic/high power transmission from the HOM b probe
 - Cavity was operated several months with a blown attenuator on this port

Repair of CM19

- Cryomodule was moved to cleanroom and beamline vacuum was letup
- Both HOM probes were removed and blanked off
- Careful repair procedures were developed and implemented
- Full monitoring of particulates recorded

Cryomodule Venting System

Isolation Valve

Particle counter

Filter

Diffuser

Cryomodule 19 Repair

Particle counter and camera

HOM Probe removal

Beamline 3mR/hr on contact

0

0

.

Accelerator Advisory Committee Meeting Jan 08

12 Managed by UT-Battelle for the Department of Energy Rii National

Particle Counts Inside CM19 HOMA

Accelerator Advisory Committee Meeting Jan 08

13 Managed by UT-Battelle for the Department of Energy

National Laboratory

for the Department of Energy

CM19 Test Results :

- All cavities were tested individually at 4.2K, 30Hz 1ms pulse
 - All cavities achieved > 15MV/m showing no degradation of performance from past data
 - Collective limits must be determined when installed in Feb 08
 - Additional diagnostics installed in cryomodule led to further understanding of HOM filters during commissioning phase
 - HOMa filter showed strong multipacting (MP) which affected many other signals including vacuum, HOMb temperature, electron probe, coupling factors ect.
 - MP was processed away and signals returned to normal

Producing Spare Cryomodules:

- The need for spare cryomodules is urgent!!
 - Problem was
 - New modules and repairs must be performed to meet ASME pressure vessel codes
 - NbTi material is not listed
 - Some weld designs not adequate
 - Pressure relief's do not meet ASME standards
 - Existing cryomodule design does not accommodate this requirement
 - Necessary cryomodule design changes will require drawings modifications
 - These problems stalled the start of cryomodule procurement and/or fabrication for at least 1 year

Addressing Pressure Vessel Requirements

- To better understand the problem we decided to:
 - Build data on pressure circuit materials at various temperatures
 - RRR Nb
 - NbTi This is well underway!!
 - SS
 - Ti
 - Welds and weld transitions
 - Perform pressure tests on all subcomponents to understand safety margins
 - Feed-thrus
 - Conflat joints
 - Bellows

This has started!!

- Transition joints
- Weld joints
- Need to review the pressure circuit design and calculations

Fracture Testing Preliminary Data (Nb)

18 Managed by UT-Battelle for the Department of Energy

Material Science and Technology Division

- Facilities Needed for String Fabrication
 - **J** Cleanroom Facilities

JLab – DI Water Plant Existing one available, new one in procurement

JLab – HPR System Hardware procured needs design and installation

√ – String Tooling

JLab – Cavity Handling Carts Review designs from vendor then procurement

JLab - RF Tuning Station Procurement not started

JLab – Degreasing and Chemistry Degreasing procured, chemistry system design started not needed right away

JLab – Vertical or Horizontal 2.1K Testing Vertical no progress, horizontal nearing completion

Accelerator Advisory Committee Meeting Jan 08

21 Managed by UT-Battelle for the Department of Energy

- Facilities Needed for Cryomodule Completion
 - $\sqrt{-}$ Assembly Carts and Rails
 - \int Hoists and Rigging
 - $\sqrt{-}$ Clean Assembly Space
 - J Horizontal Test Facility
 - RF, Controls and diagnostic systems
 - Cryogenic Systems
 - Current system (One transfer line) puts the main linac as risk when in use!!
 - System needs to be completed (return transfer line) and decoupled from the from SCL operations

Picture of Horizontal Test Cryostat Here!!

Accelerator Advisory Committee Meeting Jan 08

Producing Cryomodules In-house

- Fabrication of the spare cryomodules in-house will best meet competing requirements of:
 - Solving the pressure vessel requirements in the shortest amount of time (all expertise in-house plus a code shop)
 - Allow for proper training of staff to maintain the SCL components through a refurbishment program
 - Produce spare cryomodules that are needed to refurbish weaker ones in operations

Plans For Spare Cryomodule Fabrication:

• **Preparation Underway:**

- 8 HB and 3 MB spare cavities are now undergoing weld inspection
 - All EB welds with in the pressure circuit are being radiographed and ultrasound tested
 - This procedure necessary to qualify each cavity for use
- Spare helium vessels were inspected
 - Determination will be made soon on changes needed to meet pressure vessel requirements
 - Development of assembly and weld techniques is underway
 - Transition joints are under review, they may need to be changed if explosion bonding is not acceptable in the code

Plans For Spare Cryomodule Fabrication:

• Fabrication Procedure

- Cavities will be tuned, processed and qualified at JLab
- Cavities will then have helium vessels added at ORNL code shop
- Cavities will then be processed and assembled into a string at SNS
- End cans will be fabricated at ORNL addressing pressure codes in the design
 - MB prototype end cans will be repaired and used for the first HB spare
 - Additional end cans will be fabricated in-house
- Strings will then be dressed and assembled into a cryomodule at SNS
- Cryomodules will be tested at SNS then installed in the accelerator

Plans For Cryomodule Fabrication

- Plans are for building 2 HB cryomodules and the rebuild of a MB cryomodule in the next 3 years
 - High priority is HB so they will be built first
 - A dedicated multidiscipline group was formed carryout this effort (~7.5 FTEs)
 - MB prototype was completely disassembled and subcomponents will be reworked as fully functional MB spare
 - 2 HB Cryomodule subcomponents sets will be procured with the exception of endcans

Long Term Plans Beyond 2 years:

- Use experience from spare cryomodule production to prepare for procurement (industry) of 9 new HB cryomodules for power upgrade project
- Apply what was learned from improving CM12
 - Start a refurbishment program to improve cryomodules in the accelerator or remove to rework

• Start SRF R&D

- Continuous effort toward improving the SRF capabilities here
- Develop a long term R&D plan

Summary:

- CM19 Success, repaired internally and gradients were fully recovered with no degradation
 - CM10,11 repair next
- CM12 will be removed to develop surface processing techniques on full cryomodules (1yr)
 - Aimed at increasing collective limits on cavities
 - Successful techniques will then be applied to linac cryomodules
 - 2-3MV/m per HB cavity is needed

Summary:

- The production of spare cryomodules is now underway!!
 - With help from JLab!
 - 2 HB and 1MB planned in the next 3 years
 - Pressure vessel requirement will be met on new cryomodules, expertise is here
- SRF Facilities
 - Test cave, cleanroom facility operational!
 - New DI plant, HPR, Degreasing, Horizontal test cryostat, vertical dewar all underway!
 - Vertical test apparatus In fabrication stage!

